太平洋西北國家實驗室(PNNL)從1990年以來就一直在研究用廉價的太陽能發(fā)電,同時制造廉價的氫燃料。還有兩年時間,他們就可使氫燃料電池車在經(jīng)濟上變得更可行和劃算。為實現(xiàn)這一目標(biāo),這個項目已經(jīng)走過了20多年的歷程,也曾被一度包括在火星計劃之中。
研究人員一直在努力,把標(biāo)準(zhǔn)的太陽能電池板換成效率更高的太陽能反射器為基礎(chǔ)的發(fā)電系統(tǒng)。該想法是使用太陽能反射器發(fā)電,用電能再把天然氣轉(zhuǎn)化成氫燃料,作為車輛的動力。
一個典型的太陽能電池板把陽光轉(zhuǎn)換成電能的效率約為20%,而實驗中的太陽能反射器可以達到70%的轉(zhuǎn)化效率。負責(zé)該項目PNNL的工程師鮑勃說,作為對比,植物的光合作用(將太陽光轉(zhuǎn)化為能量)的效率,只有不到10%。
為什么是氫燃料呢?每千克氫(2.2磅)和每加侖汽油(6.3磅)的能量大約相同。據(jù)聯(lián)邦政府調(diào)查和不同汽車制造商的估計,每公斤氫氣可使燃料電池汽車行駛大約50至81英里。
我們的項目已經(jīng)非常接近商用化了
PNNL現(xiàn)在正在開發(fā)太陽能反射系統(tǒng)發(fā)電系統(tǒng),并使用這種方式制造氫燃料,目標(biāo)成本每公斤 $2美元。這大大低于當(dāng)前的任何制造氫氣的成本。2015年聯(lián)邦政府的估計,從加氫站得到的氫燃料約為每公斤$13.50,而豐田官方把加氫站氫氣的價格設(shè)定在每公斤$10至$12元。
“我們的項目已經(jīng)非常接近商用化了”鮑勃說
自1990年代以來PNNL就一直致力于使用廉價太陽能發(fā)電制造燃料。在世紀(jì)之交,美國航空航天局的計劃利用太陽光作為火星飛船的動力。這與西北太平洋國家實驗
室的研究正好契合,于是該項目獲得了巨大的推動力。雖然后來美國航空航天局的研究與PNNL的項目分道揚鑣,但使用太陽能反射器技術(shù)以幫助制造更便宜的氫燃料的想法得以延續(xù)并繼續(xù)發(fā)展迄今
“氫燃料汽車的出現(xiàn)令人眼花繚亂,同時也讓人張目結(jié)舌。幾十年來,燃料電池研發(fā)人員和汽車制造商永遠只講氫燃料是清潔能源,無需從化石燃料獲得和也不產(chǎn)生尾氣排放,是人類能源的未來和希望,但就是沒有人告訴我們,氫氣將來自哪兒和它的成本是什么“。
氫燃料汽車和為它們而創(chuàng)造的加氫站的經(jīng)濟性迄今為止仍然是個謎,也可以說是個未知的領(lǐng)域。大約兩個星期前,美國能源部發(fā)布了公眾意見的調(diào)查表,從此我們終于有機會了解和分析氫燃料,氫能汽車和加氫站的經(jīng)濟性和真相。
理論上,理想的情況下,氫車輛的燃料會比汽油便宜,并且基本上無污染??墒菤淠芷嚨囊淮笾饕娜秉c -這一技術(shù)仍然,處在實驗階段 - 氫燃料,氫動力汽車,加氫站都是非常昂貴的奢侈品。
在美國街頭 我們已經(jīng)可以看到兩款氫燃料電池汽車的身影- 2015年款現(xiàn)代途勝和2016年款的豐田未來。它們的價格是$ 58,000到$ 60,000范圍。第三個款式是2017年款的本田清晰,它目前的標(biāo)價是$ 60,000美元。
為燃料電池汽車加氫的加氫站,目前還是稀少和罕見的。- 全球的加氫站一半兒在美國加州,歐洲和日本加在一起只有少數(shù)幾個。2016年7月美國加州空氣資源委員會的報告說,可以為20輛燃料電池汽車加氫氣的加氫站,預(yù)計今年年底將增長到38,主要是在南加州的洛杉磯地區(qū)。
雖然即使汽車燃燒氫燃料也無污染,但在創(chuàng)造氫燃料的過程中,目前的工藝會產(chǎn)生自身的溫室氣體。這是西北太平洋國家實驗室的項目評估最不理想的情況。
綜上所述,PNNL太陽能反射器發(fā)電系統(tǒng),每天能夠產(chǎn)生15至17公斤的氫燃料。我們的想法是,在需要氫氣的現(xiàn)場,部署數(shù)以千計的這種裝置現(xiàn)場發(fā)電制氫。
The Pacific Northwest National Laboratory says it’s about two years away from making hydrogen fuel cell cars more cost-effective — a 20-plus-year journey that once included a dream of going to Mars.
Researchers at the lab in, have been working on a solar-reflector-based power source that they say is dramatically more efficient at generating electricity than a standard solar panel. The idea is to use the
solar-reflector device to provide the power to convert natural gas into hydrogen fuel for vehicles.
A typical solar panel converts sunlight into electricity at a 20 percent efficiency rate, while the experimental solar-reflector device can reach a 70 percent efficiency rate, said Bob Wegeng, the engineer in charge of the PNNL project. As a comparison, photosynthesis in plants converts sunlight into energy at an efficiency rate of slightly less than 10 percent.
Why hydrogen? A kilogram of hydrogen (2.2 pounds) has about the same energy content as a gallon of gasoline (6.3 pounds). A hydrogen-fuel-cell car gets roughly 50 to 81 miles per kilogram, according to various estimates from the federal government and auto manufacturers.
We’re very close to a project that is commercial
With most of the solar-reflection power source completed, PNNL is now
working on the engineering to use that power to create hydrogen fuel at a target cost of $2 per kilogram. That’s dramatically cheaper than the current conversion cost. A
<http://www.hybridcars.com/pros-and-cons-of-hydrogen-fuel-cell-vehicles/>
2015 story from HybridCars.com cited a federal estimate of $13.50 per
kilogram from a filling station dispensing hydrogen fuel. The same story quoted a Toyota official as putting the filling-station price at $10 to $12 per kilogram.
“We’re very close to a project that is commercial,” Wegeng said.
PNNL has been working at using cheap solar power to create fuels since the 1990s. At the turn of the century, that project received a tremendous boost when PNNL’s research meshed with NASA’s plans to use sunlight as a power source for Mars-bound spaceships. NASA’s research later diverged from PNNL project. But the idea of using solar-reflector technology to help create cheaper hydrogen fuel picked up momentum.
“Hydrogen cars have been such a tease. For decades, carmakers have held out the hope of clean energy, free of fossil fuels and tailpipe emissions, without telling us where the hydrogen will come from and what it will cost,” according to
<http://spectrum.ieee.org/transportation/advanced-cars/2016s-top-ten-tech-ca
rs-hyundai-tucson-fuel-cell> a story in IEEE Spectrum.
The economics of hydrogen-fueled cars and creating filling stations for them is still mostly uncharted territory. About two weeks ago, the U.S. Department of Energy
<http://energy.gov/eere/fuelcells/articles/doe-issues-request-information-hy
drogen-infrastructure-rdd> issued a request for public feedback so itcan begin to analyze the economics of hydrogen filling stations.
The theoretical upsides to hydrogen vehicles are that the fuel could be cheaper than gasoline, and essentially pollution-free. A major downside —besides still being in the experimental stage — is that hydrogen-powered cars are very expensive.
The hydrogen-powered Toyota Mirai
Two models are on American streets — the hydrogen-fueled version of the 2015 Hyundai Tucson and the 2016 Toyota Mirai. Their prices are in the range of $58,000 to $60,000. A third model is the 2017 hydrogen-fueled Honda Clarity, which carries a $60,000 price tag.
Today, hydrogen-fueled cars and the filling stations that provide hydrogen fuel are rare — essentially limited to the southern half of California in the United States along with small numbers in Europe and Japan.
<http://www.arb.ca.gov/msprog/zevprog/ab8/ab8_report_2016.pdf>A July 2016 California Air Resources Board report said there are 20 hydrogen vehicles refueling stations in that state, with that number expected to grow to 38 by the end of this year, mostly in the Los Angeles area.
Although burning hydrogen fuel in automobiles is pollution-free, the
current processes for creating hydrogen fuel produce their own greenhouse gases. That’s the downside that would be eliminated by the PNNL project.
The PNNL solar-reflector system would power a production device capable of creating 15 to 17 kilograms of hydrogen fuel per day. The idea is that hundreds, possibly thousands, of such devices could be installed at a fuel production site.




